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Abstract—Electric vehicles (EVs) are promising alternatives
to carbonized propulsion-based vehicles. They are capable of re-
ducing environmental degradation without compromising driving
performance. Power management strategies (PMS) are particu-
larly essential for electrified vehicles to ensure optimal power split
between on-board energy storage sources and to meet operational
requirements of each source. However, optimization concept in
PMS, have been constantly addressed in literature to achieve
optimal power handling decisions in real-time, particularly under
unknown driving conditions. In this contribution, an intelligent
rule-based PMS with embedded offline-optimized control pa-
rameters and online driving state recognition is proposed to
achieve optimal power handling decisions for EVs situatively
and adaptively. A set of characteristic variables defining driving
states have been extracted from representative segments of
several driving cycles, to which optimized control strategies are
tuned offline. Three different driving cycles representing urban,
highway, and mixed trip conditions have been implemented for
comparative investigation of achieved results. The analysis of
results reveals the potential of proposed PMS to reduce the energy
consumption by 13.6 – 30.9 %.

Index Terms—hybrid electric vehicles, adaptive power manage-
ment, drive pattern recognition

I. INTRODUCTION

REDUCTION of carbon footprint and mitigation of fossil
fuel depletion is considered as a global concern in

transportation technology. Electrified powertrains are promising
alternatives to fossil fuel–empowered vehicles in terms of
extended mileage, higher fuel economy, and lower emission
rates. Power management of electric vehicles (EVs) is an
important development tool considering variable power demand
and trip conditions. In this context, solution optimality and real-
time applicability are essential requirements for evaluating PMS
algorithms. While many sophisticated methods were capable of
finding a global optimum with respect to relevant conflicting
criteria, real-time applicability of such methods is limited. The
need for an applicable algorithm, yet capable to provide near-
optimal solutions is non-trivial challenge for vehicular control
schemes [1].

Fuel cell vehicles (FCVs) has been receiving particular
attention, as clean and efficient propulsion systems. However,
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FCVs are typically hybridized with other energy sources, i.e.
battery and supercapacitors, to count for the inferior power
density of fuel cells [2]. The synergy role of the supercapacitor
is to act as a power buffer when the load demand peaks at
high transients and hence, to allow the battery to operate at
nearly steady-state conditions. This prevents the battery from
suffering pre-matured aging and damage. PMS of FCVs play a
significant role in defining optimal power handling strategies to
reduce energy consumption and fulfill driveability requirements
[3].

Existing PMS can be categorized into rule-based and
optimization-based algorithms. Optimization-based algorithms
are formulated to find an optimal power management strategy
for a specific driving cycle, given a priori. The computational
complexity of such algorithms lacks its real-time applicability
on vehicular controllers. On the other side, rule-based algo-
rithms are widely implemented as they are computationally
efficient. However, rules definition in such methods is generally
based on human experience and therefore, optimal performance
is not guaranteed [4].

The overview of literature gives an insight that addressing
main deficiencies of rule-based PMS has been receiving an
increasing attention in the last few years. Improvement of
solution optimality and preserving real-time applicability of
such algorithms has been the focus of many recent advances
in PMS [5]. A comprehensive analysis of previous works is
presented in the sequel, to point out relevant contributions and
which to put forward the potential of optimized rule-based
PMS to address the main challenges of EVs.

A. Literature review

Inferior optimality of rule-based solutions has been tackled in
literature using two main approaches: offline rules optimization
and development of situative/adaptive strategies for online
application. Rule optimization can be conducted qualitatively
to define most relevant set of control variables, or quantitatively
to yield optimal values for each variable [6]. However, this
approach is sensitive to driving conditions with different dy-
namics and requires large database to improve its performance
[7].

On the other side, adaptive rule-based (ARB) methods are
capable of handling a broad spectrum of driving conditions
and achieve near optimal results [13]. The working principle
of ARB methods can be pointed out as follows: First, driving
states are defined based on a set of characteristic features



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. X, XX 2021 2

Characterisitic variables defining vehicle states

Driver-related Traffic-relatedTrip-related

Speed [8]
Power demand [9]
Acceleration [10]
Lane change [11]
Brake usage [11]

Traffic lights [12]
Speed limits [13]
Congestions [14]
Charging stops [15]

Road grade [16]
Terrain type [17]
Trip distance [13]
Altitude [16]
Temperature [18]

Fig. 1: Characteristic variables defining vehicle states for
adaptive rule-based PMS [13]

(variables) from standard driving cycles; second, optimal power
management strategies for respective vehicle states are deter-
mined using offline optimization; third, optimized solutions
are implemented as look-up tables within the online control
scheme; fourth, driving situations in real-time application are
recognized and matched to vehicle states and hence, respective
control strategies can be applied [19].

One of the advantages of decoupling optimization as an
offline process and power management as an online process
is the ability to implement global optimal solutions into real-
time control schemes. Typically, evolutionary algorithms are
suitable for multi-objective optimization of PMS goals, i.e.
electric energy efficiency, driving performance, and battery life.
Computational efficiency plays a vital role for the real-time
applicability of ARB algorithms. In this context, minimization
of time and memory usage is essential. This aspect has been
investigated in [20] for three online PMSs, revealing that
implemented adaptive co-states for equivalent consumption
minimization strategy (A-ECMS) has a significant impact on
the performance of such ADR methods. The precomputation of
parameters in an offline process also reduces the computational
effort.

In [21], control variables are optimized offline as a decoupled
process and used to tune the controller for online use, achieving
optimal distribution between three HEV powertrain sources
such that dynamic parts of the load are supplied by the su-
percapacitor. The decoupling of the optimization process from
the online process enables the use of offline-implementable,
multi-objective algorithms. Due to the modular structure of
power management optimization concept, an extension of the
concept to unknown vehicle states can be realized by integrating
look-up tables (LUTs) with sets of optimized parameters.
Dynamic behavior of energy sources in EV is a crucial aspect
of PMS, which has been addressed in [22], tacking into
account past driving patterns. In [23], it has been investigated
that online, real-time-based strategies only provide suboptimal
solutions, and hence a global optimization-based, real-time-
based strategy was developed with lower computational effort
compared to dynamic programming. Low computational effort
was guaranteed by computing a part of the algorithm offline.
However, the assumption is that the drive cycle has to be
known in advance.

Selection of characteristic variables defining vehicle states is
a critical aspect of ARB methods. Besides, optimal discretiza-
tion levels for each variable has a non-negligible impact on

TABLE I: Implemented characteristic variables for ARB
algorithms [25]
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the accuracy of state recognition and the suitability of defined
control strategies [13]. The review of relative contributions in
literature give an insight into a set of characteristic variables
used to define vehicle states for ARB strategies as illustrated
in Fig. 1.

Characteristic variables for vehicle state definition fall into
three main categories: driver-based, trip-dependent, and traffic-
related variables [24]. It has been evinced, that fuel economy
in EVs is considerably affected by driver-based variables, i.e.
maneuvering style, coasting, acceleration, and brake usage [8]–
[11]. Statistical measures for repetitive lane changing, brake
pedal abuse, and driving speed are used to identify driver’s style
and hence, suitable power handling solution can be defines
accordingly [13].

Traffic-related information has been gaining increasing
attention in light of recent advances in vehicular communication
technologies, intelligent transportation systems (ITS), and
the rapidly-growing Internet-of-Vehicles (IoV) [33]. Optimal
driving speed and power demand can be defined a priori for
upcoming route-sections based on the foreknowledge about
traffic congestions and speed limits [34]. Likewise, information
about road grade, trip distance, and available charge locations
can be implemented to define optimal usage of on-board energy
[16]–[18].

Online recognition of vehicle states has been conducted
in literature using different pattern recognition algorithms.
To this aim, fuzzy logic has been widely implemented due
to its accuracy and attainable computational requirements
[35]. Support vector machines (SVM) and Artificial neural
networks (ANN) are rather used to handle large amounts of
data-inputs and to ensure optimal clustering of driving patterns
[33]. A reinforcement learning (RL)-based strategy has been
implemented along with Markov chains in [36], achieving
a reduction in energy loss compared to rule-based strategy.
Finite-state machine has been implemented to ARB to improve
the ability to adapt to varying driving patterns by determining
the switching between event-triggered rules [13]. In [37], a
NN-based drive pattern prediction is combined with optimized
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power management to minimize both energy loss and battery
degradation in an EV.

The review of literature puts forward the significance of
particular characteristic variables defining driving patterns in
ARB methods as illustrated in Table I. Statistical attributes of
speed and power demand have been widely implemented to
define discrete driving patterns and speed profiles. Besides, du-
ration of cruising, idling, and speed-ups have been particularly
implemented to gain useful insights about driver style [26]–
[32]. Trip duration and distance have been more relevant to
ARB methods than other characteristics in literature to define
suitable power handling rules for specific trips [25].

The impact of characteristic variables on solution optimality
in ARB methods has been thoroughly investigated in literature,
putting forward the potential to improve energy efficiency in
EVs using certain combinations/discretization levels of such
variables [19]. Besides, defining vehicle states in terms of
multiple characteristic variables is beneficial for the accuracy
of pattern recognition and the adequateness of adapted power
management rules [13].

B. Problem statement and main contribution

The presented review of literature reveals the significant
potential of adaptive rule based PMS to improve driving
performance and energy efficiency of electrified powertrains.
Despite the increasing focus on situative PMS,two main
challenges are still not addressed in literature: First, defining
optimal set of characteristic variables for ARB with suitable
discretization levels; and second, evaluation and assessment of
optimally-situated PMS for different driving cycles.

This contribution aims at tackling the above-mentioned
challenges as follows: first, an intelligent PMS is proposed,
whereby optimal set of characteristic variables defining vehicle
states has been considered. Second, discretization levels for
each variable is investigated to give useful insights into the
representation of different states during vehicle operation.
Offline optimization of power management rules is conducted
for each vehicle state. Third, evaluation and assessment of
proposed PMS is conducted using different types of driving
cycles to put forward the achieved improvement under different
operating conditions.

The organization of this paper can be summarized as
follows: description of implemented model for electric FCV
and respective emulation test-bench is given in Section II. The
proposed PMS is explained in Section III, followed by the
analysis of results and discussion in Section IV.

II. MODELING, CONTROL, AND EMULATION OF
FUEL CELL ELECTRIC DRIVELINE

A multi-source pure electric powertrain model is considered
for this work, comprising fuel cell, battery, supercapacitor,
traction motor, and DC/DC converters. Validation of the
dynamic behavior of driveline components under different
control strategies has been conducted using a hardware-in-
the-loop (HiL) experimental test-rig in [38]. Characteristics
of different driveline components have been summarized in
Table II.

Emulation of driveline components, i.e., battery, fuel cell,
supercapacitor, and a 4Q-motor-generator has been realized
using controllable power sources and sinks. The degree of
similarity between the simulated and emulated values of
investigated variables has been used to validate different control
schemes for FVCs [38]. More details about driveline modeling
and description of the emulation test-rig is given in the sequel.

A. Modeling of a full-active fuel cell electric powertrain

The implemented FCV model in Fig. 2 comprises a full–
active driveline with three independent DC/DC converters
connected to the fuel cell, the battery, and to the supercapacitor
[38]. The role of PMS is to provide the desired values of
fuel cell, battery, and supercapacitor currents, based calculated
power demand.
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Fig. 2: Drive-line configuration and power flow scheme of the
fuel cell hybrid vehicle [30].

The power demand Pd is calculated as a product of driving
cycle speed v and tractive force fT as,

Pd “ ft v (1)

where, ft is given by,

ft “ m 9v `mgφ cosα`
ρ Afcdv

2

2
`mg sinα, (2)

where m denotes vehicle mass, g the gravitational acceleration,
α road inclination, ρ air density, Af vehicle frontal area, and
cd is drag coefficient of the vehicle. The actual delivered power
Pa is calculated based on the ratio of power synergy from the
fuel cell Pfc, the battery, Pb, and the supercap. Psc as,

Pd “ Pfc ` Pb ` Psc, (3)

whereby the fuel cell power is calculated considering the power
losses through activation, ohmic, and concentration voltages
as [38],

u˚
fc “ ncpu

o
fc´

´

c1 ` c2

´

1´ e´i˚
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¯¯

loooooooooooooomoooooooooooooon

uact

´...

i˚fc Rfc
loomoon

uohm

´ ifc

ˆ

c4 i
˚
fc

imax

˙c5

loooooooomoooooooon

uconc

q, (4)

where, nc denotes the number of stack cells, uofc the no-load
voltage, ifc fuel cell current, Rfc ohmic resistance of the
fuel cell, c3 “ 10, c5 “ 2, c1, c3, c4 are defined according to
quasi-static levels of fuel cell temperature using look-up tables
[39, 40], and the notation ˚ signifies in general the inputs to
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each DC/DC converter. Battery modeling has been conducted
based on a second-order Thevenin model as illustrated in Fig. 3.

Eo

i˚b
Cb Rb

Ct1

Rt1

Ct2

Rt2

u˚b

Fig. 3: Equivalent circuit model of the battery based on second-
order Thevenin model [41]

Second-order Thevenin model (also referred to in literature as
PNGV model [42]) has been widely implemented for modeling
of electric batteries in vehicular traction systems due to its
ability to represent the ohmic behavior and electrochemical
polarization with high fidelity and low computational require-
ments [43, 44]. Terminal voltage of the battery u˚

b (before the
DC/DC converter) can be described as

u˚
b “ Eo ´ i

˚
b Rb ´ ut1 ´ ut2 ´

1

Cb

ż tf

ti

i˚b dt, (5)

whereby the open-circuit battery voltage is considered at no-
load as uob “ E0, Rb denotes the internal resistance of the
battery, Cb the fictive capacitance representing the changes in
electromotive force, u˚

b ptq the terminal voltage, and the battery
polarization is modeled through two consecutive RC-networks,
such that the voltage dynamics across each RC circuit can be
defined as

„

9ut1
9ut2



“

„

´ 1
Rt1Ct1

0

0 ´ 1
Rt2Ct2

 „

ut1
ut2
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`

„ 1
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1

Ct2



i˚b , (6)

where Rt1,t2 and Ct1,t2 denote the equivalent resistance and
capacitance of each polarization RC-network [45].

For the supercapcitor, a dynamic model (adopted from a 3-
stage ladder model) is considered comprising two RC-networks
(Rs1,s2 and Cs1,s2), a bulk capacitance Csc , and an ohmic
resistance Rsc as shown in Fig. 4 [46, 47].

i˚sc
Csc Rsc

Cs1

Rs1

Cs2

Rs2

Fig. 4: Equivalent circuit model of the supercapacitor based on
an advanced 3-stages ladder mode (Dynamic Randle model)
[46, 47]

The impedance across the RC-networks represent the double-
layer capacitance and charge transfer at high dynamic rates [48].
It is noticeable that the number of in-series RC-networks in such
models can be increased to improve model accuracy at high-
frequency operations [49, 50]. The dynamic model is capable
of capturing the transient charging/discharging dynamics of
supercapacitors over a wide range of operating frequencies,
and hence have been widely implemented for simulation and

analysis of electric driveline models. Output voltage of the
supercap. is given by

u˚
sc “ uosc ´ i

˚
sc Rsc ´ us1 ´ us2 ´

1

Csc

ż tf

ti

i˚sc dt, (7)

where i˚sc denote withdrawn current from the supercapacitor.
The voltage dynamics of each RC-network can be formulated
as
„
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Modeling parameters of battery and supercapacitor models in
Eqns. (5)–(8) have been identified and experimentally validated
using real driveline components of the emulation test-rig with
the values shown in Table II [40].

In light of given battery and supercapacitor models, the state
of charge of both components can be calculated as
„
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0 1
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ti
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ştf
ti
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ff

(9)

where the initial charge of the battery and supercapacitor are
denoted by SoCb0 and SoCsc0 and the nominal charge in each
source is Qb0 and Qsc0 respectively.

The input/output relation of implemented DC/DC converters
is described as

iin “ iout
ubus
uin

1

µconv
, (10)

where desired bus voltage is given as c6 and the quasi-static
conversion efficiency is defined as a look-up table µconv “

fpiin, iout, uin, uoutq. Constant bus voltage has been retained
using a PI-controller of the DC/DC converters such that

Pd “ Id ¨ ubus, (11)

whereby, the PMS defines required current delivery from each
source as

Id “
“

i˚fc i˚b i˚sc.
‰T

(12)

A simplified mathematical model for the brushless DC motor
is given by a single input/multiple output (SIMO) state space
form as,

9x “ Amx`Bmu, (13)
y “ Cmx`Dmu, (14)

for

x “
“

ω im
‰T
, u “ umptq, (15)
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L
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fl , (16)

Cm “

»

–

1 0

0 1

fi

fl , and Dm “
“

0
‰

, (17)

where bm denotes the viscous friction constant, keq the
electromotive force constant, L equivalent circuit inductance,
J the rotational moment of inertia, and Rm is the equivalent
circuit resistance. Numerical value of all modelling parameters
are provided in Table II.
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TABLE II: Characteristic of driveline components

Component Specs/Modeling parameter Value

Vehicle

Curb mass (m) 1500 [kg]
Frontal area (Af ) 2 [m2]
Coeff. of rolling res. (φ) 0.007 [–]
Air density (ρ) 1.27 [kg/m3]
Drag coefficient (cd) 0.3 [–]
Tire radius 0.323 [m]

Fuel cell

Type PEM
Rated power 1.2 [kW]
Output voltage range 22–50 [V]
Rated power 1.2 [kW]
Number of modules nc 45 [–]
Max. output current/cell 2.2 [A]
Ohmic resistance Rfc 0.08 [Ω]

Battery

Type Li-ion
No. of modules 33
Max. cell voltage 4.2 V
Ohmic resistance Rb 0.09 [Ω]
Fictive capacitor Cb 43.2 [kF]
1st polarization resistance Rt1 0.060 [Ω]
1st polarization capacitor Ct1 366.3 [F]
2nd polarization resistance Rt2 0.058 [Ω]
2nd polarization capacitor Ct2 2.98 [F]
Initial SoC SoCb0 60 [%]

Supercap.

Nominal voltage 14 V
No of modules 72
Nominal capacity 350 [F]
Ohmic resistance Rsc 0.008 [Ω]
Bulk capacitance Csc 3 [kF]
1st polarization resistance Rs1 0.002 [Ω]
1st polarization capacitor Cs1 23 [F]
2nd polarization resistance Rs2 0.004 [Ω]
2nd polarization capacitor Cs2 300 [F]
Initial SoC SoCsc0 66.7 [%]

Motor

Type BLDC
Rated voltage 400 [V]
Rated angular speed 3500 [RPM]
Viscous friction constant bm 0.0012 [N.m.s]
Electromotive force constant keq 0.065 [V/rad/sec]
Equivalent circuit inductance L 0.5 [mH]
Rotational moment of inertia. J 0.0122 [kgm2]
Equivalent circuit resistance Rm 0.9893 [Ω]

B. Emulation principle and experimental implementation

The electric FCV driveline has been experimentally emulated
using the HiL test-rig shown in Fig 5. The emulation test-rig in-
terfaces the described driveline model (in MATLAB/Simulink)
with respective hardware components, i.e. battery, supercapac-
itor, fuel cell, drive motor, and programmable load through
CAN-Bus communication using dSPACE DSPs . The emulation
test-rig illustrated in Fig. 5 has been developed at the Chair of
Dynamics and Control (SRS), University of Duisburg-Essen
[38].

The dynamic behavior of FCV drive-line is emulated using
a power source–sink set for each power source to perform the
power flow processes, i.e. charging, discharging, and power
consumption. Besides, developed power management strategies
are depicted into the emulation test-rig for online application
of different PMS and to verify the impact of different power
handling decisions on the dynamic behavior of driveline
components. However, the real-time applicability of different
control algorithms can not be ensured in this sense using
the emulation test-rig, due to the difference in computational
capabilities between industrial vehicular computers and the
implemented DSP of the test-rig. Therefore, assessment of the
computational requirements for developed power management
algorithms should be explicitly performed [30].

III. INTELLIGENT ADAPTIVE POWER
MANAGEMENT

A. Background and novel improvements

The proposed concept is designed to provide near-optimal
power management strategy for most of the driving patterns
encountered during urban, suburban, and highway conditions.
To this aim, working steps of proposed adaptive PMS can be
defined as follows: Characteristic variables for different trip
conditions, i.e. number of stops, average and standard deviation
of speed and acceleration v̄, σpvq, and σpaq accordingly, total
distance dtot, and trip duration tDC are extracted using a set
of 25 driving cycles as illustrated in Table III.

TABLE III: Characteristic of driving cycles for grid-space
structure [13]

tDC dtot vmax σpvq No. of amax σpaq
[s] [km] [km/h] [km/h] stops [ms´2] [ms´2]

Min. 85 0.13 14 1 1 0.2 0.16
Max. 1766 46.2 138 38 23 0.7 0.55

Extracted features are depicted as axes into a multi-
dimensional space, referred to as grid-space (GS), whereby
each point in GS refers to a vehicle state. In this context, the
interpretation of drive state recognition in terms of suitably
defined variables is a viable solution for the contradicting accu-
racy/applicability problem. Based on the defined states in GS,
representative segments are generated to reflect corresponding
driving conditions. These segments are implemented for offline
optimization of power management rules, according to defined
cost function(s).

The structure of GS, in terms of depicted axes and respective
discretization levels, is a crucial aspect that influences the ability
to yield optimal power management solutions. Thus, optimal
structure of GS has been investigated in a previous step of
this work considering five characteristic variables at different
discretization levels [13]. The analysis of variance (ANOVA)
for more than 150 constellations of grid-space axes in [13] put
forward a significant impact of specific characteristic variables
to be implemented for adaptive RB-PMS, namely: vehicle
speed, power demand, and speed dynamics. Representation of
recognized vehicle states in grid-space is exemplified in Fig. 6,
considering arbitrary levels of axes’ discretization.

In this contribution, the main findings of [13] regarding
grid-space structure has been considered as a base for the
proposed adaptive RB-PMS, whereby two further improvements
has been conducted: first, definition of vehicle states in grid-
space has been evaluated using cluster analysis of recognized
states; second, application of proposed PMS to different types
of driving cycles to give further insights into the suitability
of optimized power management rules for unknown driving
conditions as summarized in Fig. 7.

For such data-intense PMS, k-mean clustering of driving
conditions in grid-space plays a crucial role for defining
optimum power management strategies for similar vehicle
states [25]. To this aim, clustering of recognized states in grid-
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Fig. 5: Operation scheme of the multi-source hybrid powertrain in hardware-in-the-loop test-bench

Fig. 6: Recognized vehicle states in grid-space during US06
drive cycle

space has been conducted considering a range of candidate
clusters tG1, G2, ..., Gnu Ă R3, whereby

Gi Ę ∅ (18)
Gi X Cj “ ∅and (19)

n
ď

i“1

Gi “ χ, (20)

for i, j “ 1, 2, ..., n and i ‰ j, where χ denotes the set of
recognized vehicle states in grid-space. K-means++ algorithm
has been implemented to calculate clusters’ centroids iteratively
based on the Euclidean distance in grid-space [51]. Defining
an optimal number of clusters n˚ is a well-known challenge in

Driving	cycles

Depiction	into	grid-space

Characteristic	variables	extraction

Axes Attributes

(1) Vehicle	speed
(2) Power	demand
(3) Speed	dynamics

Range,	Levels,
Amplitude,
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optimization

Tabulated	PMS	
solutions

Fig. 7: Generation of grid-space using a set of driving cycles
and iterative evaluation.

literature due to the contradictive relation between clustering
accuracy (for large n) and data compression within each
cluster (for small n) [52]. Therefore, cluster evaluation based
on Calinski-Harabasz index has been considered to provide
a quantitative measure of the ratio between the inter-group
variance and the intra-group variance of state-clusters. The
results og k-means clustering based on Calinski-Harabasz index
is illustrated in Fig. 8, revealing an optimal number of n˚ “ 9
for state-clusters in grid-space.

B. Offline optimization of power management rules

Based on defined vehicle states in grid-space, representative
segments can be artificially synthesized corresponding to
respective characteristic variables. To define optimal operating
conditions for specific drive state, the optimization task can
be formulated as a multi-variable/multi-objective problem to
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Fig. 8: Defining optimal number of vehicle state clusters based
on Caliniski-Harbasz index.

yield minimal fuel consumption and final drop of the battery’s
state of charge as follows

min J,

where

J “

»

—

—

—

—

—

–

α

ż tf

ti

9meqpx1´4, tqdt
loooooooooomoooooooooon

obj1

β∆SoCpx1´4,0, x1´4,f , ti, tf qdt
loooooooooooooooooomoooooooooooooooooon

obj2

fi

ffi

ffi

ffi

ffi

ffi

fl

, (21)

subject to

x1ptq P rIfc,min, Ifc,maxs, (22)
x2ptq P rζmin, ζmaxs, (23)

x3ptq P rILb,min, I
U
b,mins, (24)

x4ptq P rILb,max, I
U
b,maxs, (25)

x1´4p0q “ x1o´4o, and (26)
x1´4ptq Ă <n, (27)

where SoC denotes the battery state of charge, meq the
equivalent fuel consumption, α and β weighting factors, and ti
and tf are the initial and final time respectively, and the suffices
L and U denote lower and upper limits of corresponding
variable.

Both objectives of the cost function J have been defined
to ensure minimal energy consumption without scarifying
driveability requirements and not get trapped into charge-
depletion/charge sustaining strategy. The first objective obj1
reflects total hydrogen mass consumption of the fuel cell,
that is the prime mover of the vehicle and the recharging
source of the battery and supercapacitor. Defining the second
objective obj2 in terms of the charge drop ∆SoC has been
considered to tackle the divergence into the trivial solution,
that is constantly depleting the battery and supercharge to
minimize hydrogen consumption, until lower limits of SoC
is reached, then operating the fuel cell inefficiently to deliver
traction energy and recharge ESS.

The problem is solved using non-dominant sorting genetic
algorithms (NSGA-II) on a Cruncher-Workstation considering
50 discrete levels for each variable x1 – x4 over 100 generations.

Results from offline optimization of Eqns. (21)–(22) are
exemplified in Fig. 9 for a single vehicle state, revealing the
aforementioned contradiction between minimizing depleted
energy from the fuel cell and retaining the charge of the battery
and supercapacitor at the end of each driving cycle. In this
sense, the optimal solution can be simply defined as the minimal
Euclidean distance from the origin of Pareto front (considering
equal weights for obj1 and obj1).

20 25 30 35 40 45 50
Obj. (1) [--]

60

80

100

120

140

160

180

200

220

O
bj

. (
2)

 [
--

]

Fig. 9: Optimization results for an exemplified vehicle state
using NSGA-II in offline layer

To decouple the complexity of solving Eqns. (21)–(22)
online, the optimization problem is solved offline for all vehicle
states in grid-space and the final solutions are mapped to
according driving conditions to be addressed by the real-time
controller. Optimal power management solutions are integrated
into the online controller in form of multiple LUTs.

C. Online application and supervisory control

Optimally-defined power management rules are integrated
into the online control as look-up tables (LUTs), whereby
recognized driving conditions from real trips can be handled
according to corresponding control strategies from optimized
LUTs. The benefit of this concept lies at the mitigated
computational effort required. The easy switching between
the tabulated solutions by using a suitable algorithm makes it
possible to realize this online and in real-time.

During online power management, the recognition process in
real-time layer considers two main aspects: recent and a finite
horizon of previous characteristic variables’ clusters. Once a
specified drive state is detected, the corresponding solution
is restored to update the rule-based optimization constrains.
During transient conditions, the cluster length is re-initiated
to avoid divergence of solution optimality. Also, the current
unknown drive cycle can be stored and optimized in the offline
layer for enhancement of grid-space structure.

The introduced control scheme has been implemented as
a Matlab/Simulink model as shown in Fig. 10. Operating
conditions, i.e. power demand, vehicle speed, and state of
charge are used to define respective vehicle state in grid-
space and hence, optimal power management strategy can
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Fig. 10: Adaptive rule-based (Ad-RB) power management system of a fuel cell hybrid powertrain implement in Matlab/Simulink
model.

be extracted. A supervisory control module is implemented to
ensure suitable operating boundaries for driveline components,
as explained in the sequel. Driveability control is performed
before the DSP-interface with the emulation test-rig, to ensure
fulfillment of power demand and optimal profile tracking of
the driving cycle speed.

The conformity of optimized solutions is checked through
the supervisory control module w.r.t. operating limits of each
power source and driveline component [53]. To this aim, power
demand is used to interpret the status of driving mode, i.e.,
acceleration (Pd ą 0), braking (Pd ă 0), or stopped (Pd “ 0).
Besides, the value of SoCb and SoCsc implies the readiness
of the battery and the supercapacitor to deliver or receive
energy during traction or regenerative braking. Optimized
power management strategies for vehicle states comprise a
customized solution for each mode of operation as shown in
Table IV. Accordingly, different modes of operation for each
energy source can be defined

TABLE IV: Modes and corresponding actions

Mode Action Components Task

1

Acceleration

Battery + Supercap. Charge
2 Battery No discharge
3 Supercap. No discharge
4 Battery + Supercap. Discharge
5 Battery + Supercap. Standard

6
Braking

Supercap. Charge
7 Battery Charge

8
Stop

Supercap. Charge
9 Battery Charge

The supervisory control is deployed as a state machine
program, whereby transition between states is defined based on
Pd according to respective mode in Table IV. In this sense, both
vehicle states and modes are defined during online operation
to yield optimal power management decisions and to ensure
applicability of such decisions as exemplified for driving cycle
(us06) in Fig. 11.

IV. RESULTS ANALYSIS AND COMPARATIVE
EVALUATION

In order to investigate the proposed control strategy under
different trip conditions, three driving cycles have been selected,

Fig. 11: Controller modes / recognized states during US06

TABLE V: Characteristics of considered driving cycles for the
comparative evaluation

Driving cycles

Modem IM-short HWFET NEDC

Type Urban Highway Mixed

dtot [km] 2.20 16.5 11.0

t [s] 255 765 1180

v [km/h] 31.8 77.7 33.6

vmax [km/h] 68.9 96.3 120

a` [m/s2] 0.53 0.16 0.53

a´ [m/s2] 0.59 0.18 0.72

# a` “ 0 8 26 31

# Stops 5 1 14

ts [s] 5.60 1.00 17.2

representing urban (modemIM short), highway (HWFET) and
mixed driving conditions (NEDC). Characteristics of selected
driving cycles are summarized in in Table V including total
traveled distance dtotal, trip duration t, average speed v,
maximum speed vmax, number of accelerations #a` “ 0,
average stop duration ts, and average positive– and negative
acceleration a` and a´ accordingly. Moreover, the analysis of
results in this section is more concerned with physical values,
i.e. energy consumption and state of charge for the battery
and supercapacitor, rather than the mathematical terms of the
cost function in Eqns. (21)–(22), to avoid misinterpretation of
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Fig. 12: State of charge profiles of the battery and supercapacitor under ARB and RB PMS for different driving cycles.

normalized terms in the latter.
The state of charge profiles for the battery and supercapacitor

are illustrated in Fig. 12 for conventional rule-based (RB)
and proposed adaptive rule-based (Ad-RB) PMS. Calculation
of SoCb and SoCsc has been conducted according to Eqn.
(5)–(9), which has been comparatively verified to respective
measurements from the emulation test-rig [13]. The figure
shows higher tendency of Ad-RB to provide synergy power
from the battery and implement supercapacitor’s power to take
over unscheduled power demands (particularly for highway
driving cycles). This strategy more perceivable in highway and
mixed driving cycles with longer trip durations and higher
power demand; whereby, the role of supercapacitor is more
relevant.

Mod-IM-shrt HWFET NEDC

0

20

40

60
Ad-RB
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Fig. 13: Final drop in SoCb under ARB and RB PMS for
different driving cycles.
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-20

0

20

40
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Fig. 14: Final drop in SoCscunder ARB and RB PMS for
different driving cycles.

The drop in SoCb and SoCsc is comparatively evaluated
for both ARB and RB strategies in Fig. 13. and Fig. 14. It

can be perceived from Fig. 13 that higher depletion of SoCb

has been reached using ARB strategy for nearly all driving
cycles. Accordingly, the supercapacitor has been implemented
to recuperate more energy at the end of each driving cycles,
compared to the conventional rule-based strategy. For short
urban trips, a drop of ∆SoCb “ 19.6% has been reached
with an opportunity to recuperate more energy into the
supercapacitor, leading to an increase of `8.8% in SoCsc.
For highway driving cycles, a drop of 45% ∆SoCb has been
reached, which reflects the increasing need for synergy power
from auxiliary sources. It is noticeable that, in order to avoid
the concurrent depletion of both energy sources, the drop in
SoCb and SoCsc has been represented as a normalized sum of
both values in the conducted offline optimization ( see Obj2
in Eqn. (21)).

The synergy ratio for the battery and supercapacitor under
different control strategies ( Provided energy by each auxiliary source

Total consumed energy for the driving cycle ) is
illustrated in Fig. 15. The achieved results puts forward the
main difference between conventional power splitting (based on
heuristic ratios) and offline-optimized strategies as the increase
in synergy tasks of the battery and retaining sufficient energy
in the supercapacitor, that acts as a buffering reserve to avoid
excessive overloading of the fuel cell. This can be perceived
through the decreased synergy ratio of the SC for all driving
cycles (except for NEDC), which reflects the increase of SoCsc

at the end of each driving cycle.

Energy consumption in electrified vehicles is a relevant
and objective measure for comparative evaluation of different
power management strategies. Therefore, energy consumption
over testing driving cycles for both Ad-RB and RB PMSs are
illustrated in Table VI. Moreover, the global optimal solution
using NSGA-II for each driving cycle (based on the cost
function in Eqn. (21)) has been provided, to give more insights
into the achieved level of optimality using Ad-RB algorithm.

The comparison gives a clear insight into the impact of
driving cycle type on achievable performance of proposed
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ARB algorithm. For urban and highway trips, the improvement
in energy consumption is 13.6 – 14.6 %. On the other side,
an improvement of 30.89 % in energy consumption has been
achieved for mixed driving cycles. This reduction in energy
consumption reflects a near-optimal performance (ą 99 %
match) of Ad-RB PMS at different types of trip conditions.
The illustrated performance of Ad-RB methods puts forth the
potential of state-oriented PMS using grid-space representation
to provide near-optimal power management solutions during
online operation of electric vehicle.
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Fig. 15: Synergy ratio in [%] of battery’s (B) and supercapaci-
tor’s (SC) energy for different driving cycles.

TABLE VI: Energy consumption for selected driving cycles
under different control strategies.

Driving cycles

Modem IM-short HWFET NEDC

Type Urban Highway Mixed

E˚ [kWh/100km] 30.33 20.33 23.41

Erb [kWh/100km] 40.50 25.50 36.34

Ead´rb [kWh/100km] 34.99 21.77 28.02

Improvement: [%] 13.60 14.61 30.89

Optimality ; [%] 99.54 99.72 99.73

: Compared to rule-based solution
; Compared to global optimal solution (NSGA-II)

V. CONCLUSION

In this contribution, an intelligent power management
strategy has been proposed to approach optimal power handling
decisions in real-time applications. The proposed method is
based on defining a set of representative vehicle states in a
multi-dimensional space (grid-space), to which optimal control
variables are optimized offline. For online application, vehicle
states can be recognized based on respective characteristic
variables and optimized solutions are depicted accordingly
using look-tables.

The novelty of this work lies in the introduction of a new
drive state classification approach based on an n-dimensional
discrete description, whereby optimal axes’ discretization and
clustering of vehicle states has been considered to improve
the accuracy of respective state-wise solutions. The analysis of
results, considering different types of driving cycles, reveals
the significant potential of proposed PMS to improve energy
consumption at urban, highway and mixed-type driving cycles.

Further outlooks of this work include the development
of state-predictive PMS based grid-space solutions and the

assessment of computational requirements using real vehicular
platforms.
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situation-based power management and application to
state predictive models for multi-source electric vehicles,”
IEEE Transactions on Vehicular Technology, vol. 68,
no. 12, pp. 11 473–11 482, Dec. 2019. [Online]. Available:
https://doi.org/10.1109%2Ftvt.2019.2948918

[14] B. Geng, J. K. Mills, and D. Sun, “Two-stage energy
management control of fuel cell plug-in hybrid electric
vehicles considering fuel cell longevity,” IEEE Transac-
tions on Vehicular Technology, vol. 61, no. 2, pp. 498–508,
Feb. 2012.

[15] Q. Gong and J. Kapadia, “Customer data driven phev re-
fuel distance modeling and estimation,” in SAE Technical
Paper. SAE International, Mar. 2017, pp. 1–7.

[16] X. Zeng and J. Wang, “A parallel hybrid electric vehicle
energy management strategy using stochastic model
predictive control with road grade preview,” IEEE Trans-
actions on Control Systems Technology, vol. 23, no. 6,
pp. 2416–2423, Nov. 2015.

[17] Z. Chen, C. C. Mi, J. Xu, X. Gong, and C. You, “Energy
management for a power-split plug-in hybrid electric
vehicle based on dynamic programming and neural
networks,” IEEE Transactions on Vehicular Technology,
vol. 63, no. 4, pp. 1567–1580, May 2014.

[18] M. Liebers, R. Kloß, and B. Bäker, “Combined power
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[21] B. Moulik and D. Söffker, “Online power management
with embedded offline-optimized parameters for a three-
source hybrid powertrain with an experimental emulation
application,” Energies, vol. 9, no. 6, p. 439, jun 2016.

[22] J. Kessels, M. Koot, P. van den Bosch, and D. Kok,
“Online energy management for hybrid electric vehicles,”
IEEE Transactions on Vehicular Technology, vol. 57, no. 6,
pp. 3428–3440, nov 2008.

[23] S. Kermani, R. Trigui, S. Delprat, B. Jeanneret, and T. M.
Guerra, “PHIL implementation of energy management
optimization for a parallel HEV on a predefined route,”
IEEE Transactions on Vehicular Technology, vol. 60, no. 3,
pp. 782–792, mar 2011.

[24] R. Wang and S. M. Lukic, “Review of driving conditions
prediction and driving style recognition based control
algorithms for hybrid electric vehicles,” in 2011 IEEE
Vehicle Power and Propulsion Conference. IEEE, Sep.
2011.

[25] A. M. Ali and M. S. Asfoor, “Optimal battery sizing and

stops allocation for electrified fleets using data-driven
driving cycles: A case study for the city of cairo,” IEEE
Transactions on Transportation Electrification, pp. 1–1,
2022.

[26] E. Silvas, K. Hereijgers, H. Peng, T. Hofman, and
M. Steinbuch, “Synthesis of realistic driving cycles with
high accuracy and computational speed, including slope
information,” IEEE Transactions on Vehicular Technology,
vol. 65, no. 6, pp. 4118–4128, Jun. 2016.

[27] J. Huertas, M. Giraldo, L. Quirama, and J. Dı́az, “Driving
cycles based on fuel consumption,” Energies, vol. 11,
no. 11, p. 3064, Nov. 2018.

[28] S. K. Mayakuntla and A. Verma, “A novel methodology
for construction of driving cycles for indian cities,” Trans-
portation Research Part D: Transport and Environment,
vol. 65, pp. 725–735, Dec. 2018.

[29] H. Kaymaz, H. Korkmaz, and H. Erdal, “Development
of a driving cycle for istanbul bus rapid transit based on
real-world data using stratified sampling method,” Trans-
portation Research Part D: Transport and Environment,
vol. 75, pp. 123–135, Oct. 2019.

[30] A. M. Ali, A. Ghanbar, and D. Söffker, “Optimal control
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